Parameter dependences of convection-driven dynamos in rotating spherical fluid shells
نویسندگان
چکیده
For the understanding of planetary and stellar dynamos an overview of the major parameter dependences of convection driven dynamos in rotating spherical fluid shells is desirable. Although the computationally accessible parameter space is limited, earlier work is extended with emphasis on higher Prandtl numbers and uniform heat flux condition at the outer boundary. The transition from dynamos dominated by non-axisymmetric components of the magnetic field to those dominated by the axisymmetric components depends on the magnetic Prandtl number as well as on the ordinary Prandtl number for higher values of the rotation parameter τ . The dependence of the transition on the latter parameter is also discussed. A variety of oscillating dynamos is presented and interpreted in terms of dynamo waves, standing oscillation or modified relaxation oscillations.
منابع مشابه
Bistability and hysteresis of dipolar dynamos generated by turbu- lent convection in rotating spherical shells
Bistability and hysteresis of magnetohydrodynamic dipolar dynamos generated by turbulent convection in rotating spherical fluid shells is demonstrated. Hysteresis appears as a transition between two distinct regimes of dipolar dynamos with rather different properties including a pronounced difference in the amplitude of the axisymmetric poloidal field component and in the form of the differenti...
متن کاملMagnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.
A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipati...
متن کاملConvection in Rotating Spherical Fluid Shells
Convection driven by thermal buoyancy in rotating spherical bodies of fluid has long been recognized as a fundamental process in the understanding of the properties of planets and stars. Since these objects are rotating in general and since their evolution is associated with the transport of heat from their interiors convection influenced by the Coriolis force does indeed play a dominant role i...
متن کاملSome Unusual Properties of Turbulent Convection and Dynamos in Rotating Spherical Shells
Convection of an electrically conducting fluid in a rotating system represents a basic dynamical process in planetary interiors and in stars. Astrophysicists and geophysicists have long been interested in the mechanisms that govern the convective heat transport and the generation of magnetic fields by convection in those systems. The availability in recent years of large scale computer capaciti...
متن کامل